Showing posts with label powerpal. Show all posts
Showing posts with label powerpal. Show all posts

Saturday, 17 September 2022

Dispatchables Part 2; Computer, enhance!

As usual with software, Dispatchables v1.0.0 wasn't ideal. In fact, it didn't really capture the "Dispatchable" idea at all. What if I don't have any batteries that need charging? Wouldn't it be better to only enable the charger if there was actually charging work to be done? And for how long? We need a way to specify intent.

Here's what I'd like to be able to tell the charging system:

  • I have flat batteries in the charger
  • I want them to be charged for a total of {x} hours

To me, that looks like a perfect job for a voice-powered Google Assistant integration. Let's go!

Googlification phase 1

First, let's equip our Broadlink smart power socket item with the required ga attribute so we can control it via the openHAB Google Assistant Action.

$OPENHAB_CONF/items/powerpoints.items:
Switch SP2_Power "Battery Charger Power" { 
  channel="broadlink:sp2:34-ea-34-84-86-d1:powerOn", 
  ga="Switch" 
}

If I go through the setup steps in the Google Assistant app on my phone, I can now see "Battery Charger Power" as a controllable device. And sure enough, I can say "Hey Google, turn on the battery charger" and it all works. Great!

Now, we need to add something to record the intent to perform battery-charging when solar conditions allow, and something else that will track the number of minutes the charger has been on for, since the request was made. Note that this may well be over multiple distinct periods, for example if I ask for 6 hours of charging but there's only one hour of quality daylight left in the day, I would expect the "dispatch" to be resumed the next day once conditions were favourable again. Once we've hit the desired amount of charging, the charger should be shut off and the "intent" marker reset to OFF. Hmmm... 🤔

Less state === Better state

Well, my first optimisation on the way to solving this is to streamline the state. I absolutely do not need to hold multiple distinct but highly-related bits of information:

  • Intent to charge
  • Desired charge duration
  • Amount of time remaining in this dispatch
... that just looks like an OOP beginner's first try at a domain object. Huh. Remember Java Beans? Ugh.

We can actually do it all with one variable, the Dead Timer "pattern" (if you can call it such a thing) I learnt from an embedded developer (in C) almost 20 years ago:


  unsigned int warning_led_timer = 0;

  /* Inside main loop, being executed once per second */
  
  while (warning_led_timer > 0) {
    warning_led_timer--;
    
    /* Enable the LED, or turn it off if no longer needed */
    enable_led(WARNING_LED, warning_led_timer > 0);
  }
  
  /* ...
  * Somewhere else in the code that needs to show
  * the warning LED for 3 seconds
  */
  warning_led_timer = 3;
It encapsulates:
  • intent - anyone setting the timer to a non-zero value
  • desired duration - the initial non-zero value
  • duration remaining - whatever value the variable is currently holding; and
  • termination - when the variable hits zero
Funny that a single well-utilised variable in C (of all things) can actually achieve one of the stated goals of OO (encapsulation) isn't it? All depends on your point of view I guess. Okay. Let's step back a little bit and see what we can do here.

Objectives

What I'd like to be able to do is have this conversation with the Google Assistant:

Hey Google, charge the batteries for five hours
"Okay, I'll charge the batteries for five hours"

... with all the underlying "dispatchable" stuff I've talked about being done transparently. And for bonus points:

Hey Google, how much charge time remaining?
"There are three hours and 14 minutes remaining"

So as it turns out, the Google Assistant has an Energy Storage trait which should allow the above voice commands (or similar) to work, as it can be mapped into the openHAB Charger Device Type. It's all starting to come together - I don't have a "smart charger" (i.e. for an electric vehicle) but I think I can simulate having one using my "dead timer"!

Sunday, 28 August 2022

"Dispatchables" with OpenHAB and PowerPal

I read a while back about the concept of "dispatchable" energy sources - namely, ones that can be brought on- or off-stream at virtually no notice, at a desired output level. As an enthusiastic solar-power owner/operator, the idea of tuning my energy consumption to also be dispatchable, suited to the output of my rooftop solar cells, makes a lot of sense.

My first tiny exploration into this field will use OpenHAB to automate "dispatch" of a non-time-critical task: recharging some batteries, to a time that makes best use of the "free" solar energy coming from my roof.

Just to be clear, I'm referring to charging domestic AA and AAA batteries here; I'm not trying to run a PowerWall!

OMG PPRO REST API FTW

To get the necessary insight into whether my house is running "in surplus" power, I'm using my PowerPal PRO which offers a simple RESTful API. If you send off a GET with suitable credentials to

https://readings.powerpal.net/api/v1/device/{{SERIAL_NUMBER}}
you get something like:

{
    "serial_number": "000abcde",
    "total_meter_reading_count": 443693,
    "pruned_meter_reading_count": 0,
    "total_watt_hours": 4246285,
    "total_cost": 1380.9539,
    "first_reading_timestamp": 1627948800,
    "last_reading_timestamp": 1659495300,
    "last_reading_watt_hours": 0,
    "last_reading_cost": 0.00062791666,
    "available_days": 364,
    "first_archived_date": "2021-04-13",
    "last_archived_date": "2022-08-02"
}

It's pretty straightforward to translate that into an openHAB Thing definition using the HTTP Binding that will get us the current watt-hours reading every 60 seconds (which is how often the device phones home)

$OPENHAB_CONF/things/powerpal.thing:
Thing http:url:powerpal "PowerPal" [
  baseURL="https://readings.powerpal.net",
  headers="Authorization=MyPowerPalAPIKey", 
    "Accept=application/json",
  timeout=2000,
  bufferSize=1024,
  refresh=60] {
    Channels:
      Type number : powerUsage "Newest Power Usage" 
      [ stateExtension="/api/v1/device/000abcde", 
      stateTransformation="JSONPATH:$.last_reading_watt_hours", 
      mode="READONLY" ]
}
You can get MyPowerPalAPIKey as used above, by opening the PowerPal mobile app and going to Guidance -> Generate an API Key.

That's it for the "physical" (Thing) layer. Lets move up the stack and define an Item that we can work with in a Rule.

$OPENHAB_CONF/items/powerpal.items:
Number:Power currentPowerUsage "Current Power Usage [%d W]" 
  {channel="http:url:powerpal:powerUsage"}

... and if you're me, nothing will happen, and you will curse openHAB and its constant changes. Make sure you've actually got the HTTP Binding installed or it'll all just silently fail. I wasn't able to see the list of Official Bindings because of some weird internal issue. So I had to do a full sudo apt-get update && sudo apt-get upgrade openhab before I could get it.

Then, fun times ensued because the PowerPal API uses a slightly-strange way of providing authentication, which didn't fit very well with how the HTTP binding wants to do it. I had to go spelunking through the binding's source code to figure out how to specify the Authorization header myself.

Now we can finally get to the "home automation bus" bit of openHAB ... we define a rule that's watching for power usage changes, and triggers my Broadlink SP2 smart power switch on or off depending on whether we're net-zero.

$OPENHAB_CONF/rules/dispatchable.rules:
rule "Charge batteries if in power surplus"
when
  Item housePowerUsage changed 
then
  logInfo("dispatchable", "Power: " + housePowerUsage.state);

  if (SP2_Power.state === ON && housePowerUsage.state > 0|W) {
    logInfo("dispatchable", "Charger -> OFF");
    SP2_Power.sendCommand(OFF);
  }
  if (SP2_Power.state === OFF && housePowerUsage.state == 0|W) {
    logInfo("dispatchable", "Charger -> ON");
    SP2_Power.sendCommand(ON);
  }
end

And we're all done!

What's that weird |W stuff? that's an inline conversion to a Number:Power object, so that comparisons can be performed - a necessary, if slightly awkward aspect of openHAB's relatively-new "Units Of Measurement" feature.

What does it look like? Here's the logs from just after 9am:

09:06:37 [dispatchable] - Power: 3 W
09:07:37 [dispatchable] - Power: 2 W
09:08:37 [dispatchable] - Power: 3 W
09:09:37 [dispatchable] - Power: 2 W
09:12:37 [dispatchable] - Power: 3 W
09:13:37 [dispatchable] - Power: 2 W
09:16:37 [dispatchable] - Power: 1 W
09:18:37 [dispatchable] - Power: 0 W
09:18:37 [dispatchable] - Charger -> ON

So the query to PowerPal is obviously running on the 37th second of each minute. There are "missing" entries because we're only logging anything when the power figure has changed. You can see the panels gradually creating more power as the sun's incident angle/power improves, until finally at 9:18, we hit power neutrality and the charger is turned on. Not bad.

Saturday, 26 February 2022

New Toy

I just received this from the good folk at PowerPal:

This is a cool device that basically should give me real-time API-based access to the power usage of my house. The next logical step for me is to then bundle it up into my openHAB setup. I'll probably begin with just using the HTTP binding to get what I need, and maybe (and it's a BIG maybe) turn it into a genuine binding at some point in the future. My experience trying to get the Broadlink binding merged into the openHAB addons codebase has turned me off that process a little...