Showing posts with label create-react-app. Show all posts
Showing posts with label create-react-app. Show all posts

Monday, 27 February 2023

Stepping up, and back, with the new Next.js "app" directory

I'm toying around with a new web-based side project and I thought it was time to give the latest Next.js version a spin. Although I've used Create-React-App (generally hosted on Netlify) more recently, I've dabbled with Next.js in one capacity or another since 2018, and this time some server-side requirements made it a better choice.

The killer feature of the 2023 "beta version" of Next.js (which I assume will eventually be named Next.js 14) is the app directory, which takes Next's already-excellent filesystem-based routing (i.e. if you create a file called bar.tsx in a directory called foo, you'll find it served up at /foo/bar without writing a line of code) and amps it up. A lot.

I won't try and reiterate their excellent documentation, but their nested layouts feature is looking like an absolute winner from where I'm sitting, and I'd like to explain why by taking you back in time. I've done this before when talking about React-related stuff when I joked that the HTML <img> tag was like a proto-React component. And I still stand by that comparison; I think this instant familiarity is one of the fundamental reasons why React has "won" the webapp developer mindshare battle.

Let me take you back to 1998. The Web is pretty raw, pretty wild, and mostly static pages. My Dad's website is absolutely no exception. I've meticulously hand-coded it in vi as a series of stand-alone HTML pages which get FTP'ed into position on his ISP's web server. Although I'm dimly aware of CSS, it's mainly still used for small hacks like removing the underlines from links (I still remember being shown the way to do this with an inline style tag and thinking it would never take off) - and I'm certainly not writing a separate .css file to be included by every HTML file. As a result, everything is styled "inline" so-to-speak, but not even in the CSS way; just mountains of widths and heights and font faces all over the place. It sucked, but HTML was getting better all the time so we just put up with it, used all that it offered, and automated what we could. Which was exactly what I did. If you dare to inspect the source of the above Wayback Machine page, you'll see that it uses HTML frames (ugh), which was a primitive way of maintaining a certain amount of UI consistency while navigating around the site.

The other thing I did to improve UI consistency, was a primitive form of templating. Probably more akin to concatenation, but I definitely had a header.htm which was crammed together with (for-example) order-body.htm to end up with order.htm using a DOS batch file that I ran to "pre-process" everything prior to doing an FTP upload - a monthly occurrence as my Dad liked to keep his "new arrivals" page genuinely fresh. Now header.htm definitely wasn't valid HTML as it would have had unclosed tags galore, but it was re-used for several pages that needed to look the same, and that made me feel efficient.

And this brings me to Next.js and the nesting layouts functionality I mentioned before. To achieve what took me a pile of HTML frames, some malformed HTML documents and a hacky batch file, all I have to do is add a layout.tsx and put all the pages that should use that UI alongside it. I can add a layout.tsx in any subdirectory and it will apply from there "down". Consistency via convention over configuration, while still nodding to the hierarchical filesystem structures we've been using since Before The Web. It's just really well thought-out, and a telling example of how much thought is going into Next.js right now. I am on board, and will be digging deeper this year for sure.

Sunday, 12 June 2022

Introducing ... Cardle!

UPDATE [July 2023] - I've let the cardle.xyz domain expire after a year, but you can still play the game over at cardle.themillhousegroup.com

Yes, it's yet-another Wordle clone, this time about cars:

https://www.cardle.xyz

Like so many other fans of Wordle, I'd been wanting to try doing a nice self-contained client-side game like this, and after trying the Australian Rules player version of Wordle, Worpel (named after a player), I saw a pattern that I could use. Worpel uses "attributes" of an AFL player like their height, playing position, and team, and uses the Wordle "yellow tile" convention to show if you're close in a certain attribute. For example, if the team is not correct, but it is from the correct Australian state. Or if the player's height is within 3 centimetres of the target player's.

After a bit of head-scratching I came up with the 5 categories that I figured would be challenging but with enough possibilities for the "yellow tile" to be helpful. There's no point having a category that can only be right (green tile) or wrong (black tile). The least-useful is probably the "model name" category but of course that is vital to the game, and having played the game literally hundreds of times now, it has on occasion proved useful to know that a certain character appears in the target car's name (obviously cars like the Mazda 6 are hugely helpful here!)

It has been a while since I last did a publicly-visible web side-project, and I wanted to see what the landscape was like in 2022. The last time I published a dynamic website it was on the Heroku platform, which is still pretty good, but I think there are better options these days. After a bit of a look around I settled on Netlify, and so far they've delivered admirably - fast, easy-to-configure and free!

There has been some criticism bandied about for create-react-app recently, saying it's a bad starting point, but for me it was a no-brainer. I figure not having to know how to optimally configure webpack just leaves me more brain-space to devote to making the game a bit better. So without any further ado, I'd like to showcase some of my favourite bits of the app.

Tile reveal animation

Wordle is outstanding in its subtle but highly-effective animations that give it a really polished feel, but I really didn't want to have to use a Javascript animation library to get a few slick-looking animations. The few libraries I've tried in the past have been quite heavy in both bundle-size and intrusiveness into the code. I had a feeling I could get what I wanted with a suitable CSS keyframes animation of a couple of attributes, and after some experimenting, I was happy with this:

      @keyframes fade-in {
        from {
          opacity: 0;
          transform:scale(0.5)
        }
        50%  { 
          transform:scale(1.2); 
          opacity: 0.5; 
        }
        to {
          opacity: 1;
          transform:scale(1.0)
        }
      }

I really like the "over-bulge" effect before it settles back down to the correct size. The pure-CSS solution for a gradual left-to-right "reveal" once a guess has been entered worked out even better I think. Certainly a lot less fiddly than doing it in Javascript:

.BoxRow :nth-child(1) {
  animation: fade-in 200ms;
}
.BoxRow :nth-child(2) {
  animation: fade-in 400ms;
}
.BoxRow :nth-child(3) {
  animation: fade-in 600ms;
}
.BoxRow :nth-child(4) {
  animation: fade-in 800ms;
}
.BoxRow :nth-child(5) {
  animation: fade-in 1000ms;
}
Those different times are the amount of time the animation should take to run - giving it the "sweeping" effect I was after:

Mobile-first

As developers we get far too used to working on our own, fully up-to-date, desktop, browser of choice. But a game like this is far more likely to be played on a mobile device. So I made a concerted effort to test as I went both with my desktop Chrome browser simulating various mobile screens and on my actual iPhone 8. Using an actual device threw up a number of subtle issues that the desktop simulation couldn't possibly hope to replicate (and nor should it try) like the extraordinarily quirky stuff you have to do to share to the clipboard on iOS and subtleties of font sizing. It was worth it when my beta-testing crew complimented me on how well it looked and played on their phones.

Performance

The site gets 98 for mobile performance (on slow 4G) and 100 for desktop from PageSpeed, which I'm pretty chuffed about. I spent a lot of time messing around with Google Fonts and then FontSource trying to get a custom sans-serif font to be performant, before just giving up and going with "whatever you've got", i.e.:

font-family: 'Segoe UI', 'Roboto', 'Oxygen',
          'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue',
          sans-serif;
... sometimes it's just not worth the fight.

The other "trick" I did was relocating a ton of CSS from the various ComponentName.css files in src right into a <style> block right in the head of index.html. This allows the browser to get busy rendering the header (which I also pulled out of React-land), bringing the "first contentful paint" time down appreciably. Obviously this is not something you'd want to be doing while you're in "active development" mode, but it doesn't have to be a nightmare - for example, in this project I made good use of CSS Variables for the first time, and I define a whole bunch of them in that style block and then reference them in ComponentName.css to ensure consistency.

Friday, 24 August 2018

Building a retro game with React.js. Part 5 - Fill 'er up

By now I had a good portion of the "player's part" of the game complete. Movement around the game area, drawing lines, detecting intersection with existing lines and preventing illegal movement were all done, using the div-based "drawing" that I was familiar with. But now it was time to draw the filled colour block that results when a closed area has been completed. And I was looking at a wall of complexity that I didn't know how to scale.



The answer was to challenge my own comfort zone. Allow myself to quote, myself:
I could do that with an HTML canvas, but I'm (possibly/probably wrongly) not going to use a canvas. I'm drawing divs dammit!
After all, if ever there was a time and place to learn how to do something completely new, isn't it a personal "fun" project? After a quick scan around the canvas-in-React landscape I settled upon React-konva, which has turned out to be completely awesome for my needs, as evidenced by the amount of code changes actually needed to go from my div-based way of drawing a line to the Konva way:
The old way:

const Line = styled('div')`
  position: absolute;
  border: 1px solid ${FrenzyColors.CYAN};
  box-sizing: border-box;
  padding: 0;
`;

renderLine = (line, lineIndex) => {
  const [top, bottom] = minMax(line[2], line[4]);
  const [left, right] = minMax(line[1], line[3]);
  const height = (bottom - top) + 1;
  const width = (right - left) + 1;
  return <Line key={`line-${lineIndex}`}
                  style={{ top: `${top}px`, 
                           left: `${left}px`,
                           width: `${width}px`,
                           height: `${height}px` }} />;
}

The new way:

import { Line } from 'react-konva';

renderLine = (line, lineIndex) => {
  return (
    <Line
      key={`line-${lineIndex}`}
      points={line.slice(1)}
      stroke={FrenzyColors.CYAN}
      strokeWidth={2}
    />
  );
}

... and the jewel in the crown? Here's how simple it is to draw a closed polygon with the correct fill colour; by total fluke, my "model" for lines and polygons is virtually a one-to-one match with the Konva Line object, making this amazingly straightforward:
renderFilledArea = (filledPolygon) => {
  const { polygonLines, color } = filledPolygon;
  const flatPointsList = polygonLines.reduce((acc, l) => {
    const firstPair = l.slice(1, 3);
    return acc.concat(firstPair);
  }, []);

  return (
    <Line
      points={flatPointsList}
      stroke={FrenzyColors.CYAN}
      strokeWidth={2}
      closed
      fill={color}
    />
  );
}

Time Tracking
Probably at around 20 hours of work now.

Monday, 16 July 2018

Building a retro game with React.js. Part 4 - Drawing the line somewhere

In the previous instalment of this series, I was able to get the player's "sprite" (actually just a div with a border!) to move around the existing lines on the edge of the screen. The next logical step is to allow the player to draw their own lines, which, upon joining at both ends to existing lines, will become part of the "navigable" world the player can manoeuvre through.

Bugs Galore
It was at this point where I started being plagued by off-by-one errors; it seemed everywhere I turned I was encountering little one-pixel gaps when drawing lines, because:
  • My on-screen lines are actually 2px wide
  • My line-drawing function was doing an incorrect length calculation (had to do (right - left) + 1)
  • I was not updating my position at the right time, so was storing my "old" position as the current line's end point; and;
  • I was naively using setState and expecting the new this.state to be visible immediately

My solution to almost all of these problems (with the exception of the UI line-drawing function) was to write a heap of unit tests; these generally flushed things out pretty quickly.

Writing the line-drawing function was a weird experience. Virtually every software development "environment" I've ever used before, from BBC Basic on my Acorn Electron on, has had a function like drawLine(startX, startY, endX, endY);. And I could do that with an HTML canvas, but I'm (possibly/probably wrongly) not going to use a canvas. I'm drawing divs dammit! Here's what my function looks like:
renderLine = (line, lineIndex) => {
  const [top, bottom] = minMax(line[2], line[4]);
  const [left, right] = minMax(line[1], line[3]);
  const height = (bottom - top) + 1;
  const width = (right - left) + 1;
  return <Line key={`line-${lineIndex}`}
                  style={{ top: `${top}px`, 
                           left: `${left}px`,
                           width: `${width}px`,
                           height: `${height}px` }} />;
}
Where minMax is a simple function that returns [min, max] of its inputs, and Line is a React-Emotion styled div:
const Line = styled('div')`
  position: absolute;
  border: 1px solid ${FrenzyColors.CYAN};
  box-sizing: border-box;
  padding: 0;
`;
Notice that I resisted the temptation to pass the top, left etc into the Line wrapper. The reason for this is that doing so results in a whole new CSS class being created, and getting applied to the line, every time one of these computed values changes. This seems wasteful when most of the line's attributes remain the same! So I use an inline style to position the very-thin divs where I need it.
Time Tracking
Up to about 12 hours by my rough estimate.

Friday, 15 June 2018

Building a retro game with React.js. Part 3 - I Like To Move It

So with most of the graphical pieces in position, it's time to make things move around.

Again, starting with the easy stuff, I wanted the four directional keys to move the Player around. But in Frenzy, you can only move (as opposed to draw) along the boundaries of the game area and on lines you have already drawn. So if we look at my first iteration of the code in GameArea to handle a request to move the Player left, it's something like this:
 
update = () => {
  if (this.keyListener.isDown(this.keyListener.LEFT)) {
    this.moveLeft();
  }
};

moveLeft = () => {
  if (this.canMove(Direction.LEFT)) {
    this.setState({
       playerX : this.state.playerX -1
    });
  }
}
I ended up bundling quite a lot of smarts into the Direction enumeration in order to make the logic less "iffy" and more declarative. That one Direction.LEFT key encapsulates everything that is needed to check whether a) the player is on a line that has the correct orientation (horizontal) and b) there is room on that line to go further to the left.
A line looks like this:
[Orientation.HORIZONTAL, 0, 0, 478, 0], // startX, startY, endX, endY
and Direction looks like this:
export const Direction = {
  LEFT: {
    orientation: Orientation.HORIZONTAL,
    primaryCoord: (x, y) => y,
    lineToPrimaryCoord: (line) => line[2],
    secondaryCoord: (x, y) => x,
    testSecondary: (c, line) => c > Math.min(line[1], line[3])
  },
  ...
}

My test for whether I can move in a certain direction is:
static canPlayerMoveOnExistingLine = (playerX, playerY, direction, lines) => {
  const candidates = lines.filter(line => {
    return (line[0] === direction.orientation)
  });
    
  const pri = direction.primaryCoord(playerX, playerY);
  const primaryLines = candidates.filter(candidateLine => {
    return direction.lineToPrimaryCoord(candidateLine) === pri;
  });

  if (primaryLines.length > 0) {
    const sec = direction.secondaryCoord(playerX, playerY);
    const found = primaryLines.find(line => {
      return direction.testSecondary(sec, line);
    });

    return typeof found !== 'undefined';
  }
  return false;
} 
Declared static for ease of testing - easy and well worth doing for something like this where actually moving the player around is time-consuming and tedious. It's working well as it stands, although as we all know, naming things is hard. It's pretty easy to follow the process though. At this point I'm holding a lines array in this.state and doing filter and find operations on it as you can see above. We'll have to wait and see whether that will be fast enough. It may well be a good idea to keep a currentLine in state, as most of the time it will be unchanged from the last player movement. Next up, it's time to start drawing some new lines on the screen!

Kudos
I am starting to build up some tremendous respect for the original author of this game; although often dismissed as "very simple" there are some tricky little elements to coding this game and I'm only just scratching the surface. To achieve the necessary performance on an 8-bit, 1MHz processor with RAM measured in the handfuls of kilobytes is super impressive. Assembly language would have been necessary for speed, making the development and debugging a real pain. I haven't even started thinking about how to do the "fill" operation once a line has been drawn and it encloses some arbitrary space, but I suspect the original developer "sniffed" the graphics buffer to see what was at each pixel location - a "luxury" I don't think I'll have!
Time Tracking
Up to about 6 hours now.

Monday, 11 June 2018

Building a retro game with React.js. Part 2 - Screens

Continuing to nibble my way towards the hard parts, I've finished the basic designs of the welcome page, main game page and the paused-game page, including wiring up the key listeners so it all works as expected.

One thing I hadn't thought about was the behaviour of listening to the P key to pause and also resume. The first iteration of the code would flicker madly between the game page and the paused page whenever the P key was pressed - the game loop runs so fast that the app would transition multiple times between the two pages, because the isDown test would simply toggle the state of this.state.paused. I messed around for a while with storing the UNIX time when the key was first pressed, and comparing it to the current time, before realising I really just needed to know what "direction" was being requested, and then waiting for this "request" to finish before completing the transition.
...

debounce = (testCondition, key, newState) => {
  if (testCondition) {
    if (this.keyListener.isDown(key)) {
      // No. They are still holding it
      return true;
    }
    this.setState(newState);
   }
   return false;
};
 
handleKeysWhilePaused = () => {
  if (this.debounce(this.state.pauseRequested, P, {
    pauseRequested: false,
    paused: true
  })) {
    return;
  }

  if (this.debounce(this.state.unpauseRequested,P, {
    unpauseRequested: false,
    paused: false
  })) {
    return;
  }

  if (this.keyListener.isDown(Q)) {
    this.props.onGameExit();
  }

  if (this.keyListener.isDown(P)) {
    this.setState({unpauseRequested: true});
  }
}

handleGameplayKeys = () => {
  if (this.keyListener.isDown(P)) {
    this.setState({pauseRequested: true});
  }
}

update = () => {
  if (this.state.pauseRequested || this.state.paused) {
    this.handleKeysWhilePaused();
  } else {
    this.handleGameplayKeys();
  }
};
...
Effectively I've implemented an isUp(), which is surprisingly not in the react-game-kit library. Oh well, it's all good learning.
Time tracking
I'd estimate the total time spent on the game so far would be 3-4 hours.

Friday, 8 June 2018

A New Old Thing; Building a retro game with React.js. Part 1 - Background and Setup

I've blogged before about entering the fast-paced world of React.js, after a couple of years I'm still (on the whole) enjoying my day job working with it. Over this period React has done a pretty good job of delivering the "maintainable large JavaScript application" promise, but in the apps I built we've seen a few problems that stemmed from our developers' differing levels of experience with design patterns, immutability concepts, higher-order functions and higher-order components.

At the risk of being immodest, I'm comfortable with those concepts - Design Patterns from waaaay back and the functional paradigms from my five-year (and counting) love affair with Scala. What I wanted to explore was - what would happen if I built a React app by myself, endeavouring to write the cleanest, purest software based upon the best starting-point we currently have? How productive could I be? How long would it take to build a working full app? How would maintenance go? How quickly could I add a new feature?

As my day job is basically building CRUD apps, I wanted to do something a lot more fun for this side-project. And what could be more fun than a game? (Mental note: ask people working at Electronic Arts...) There's also a pleasing circularity in building a game and documenting how I did it - back in my earliest days of having a computer, aged about 7, I would buy magazines with program listings and laboriously enter them, line-by-line, while marvelling at how anyone could really have been good enough to know how to do this.

The Game
I'll admit, I've never built a non-trivial game before, but I think attempting an 8-bit home computer game I remember fondly from my childhood, on top of 2018's best front-end technologies, should be about the right level of difficulty.

The game I'll be replicating is called Frenzy; a Micro Power publication for the BBC B, Acorn Electron and Commodore 64. My machine was the Electron - basically a low-cost little brother to the mighty Beeb; highly limited in RAM and CPU, titles for this platform usually needed substantial trimming from their BBC B donor games, despite using the same BBC BASIC language.

Check out the links above for more details and screenshots, but the game is basically a simplified version of "Qix" or "Kix" where the object is to fill in areas of the screen without being hit by one or more moving enemies.

Just for the hell of it, I'm going to place this game front-and-centre on my homepage at http://www.themillhousegroup.com, which I just nuked for this purpose. The page is now a React app being served off a Play Scala backend as per my new-era architecture, and the key technologies I'm using so far are: I'm sure more will follow.

Initial Development
To develop the game, I decided to start from the start. The welcome page would need to be suitably old-skool but would force me to consider a few things:
  • What screen size should I be working to?
  • Can I get a suitably chunky, monospaced font?
  • Press Space to start sounds easy, but how do I make that actually work?
Decisions
The original Frenzy must have operated in the BBC's graphical MODE 1 because it used a whopping 4 colours and the pixels were square. So that means the native resolution was 320x256. While it would be tempting to stick to that screen size and thus have it fit on every smartphone screen, I've decided to double things and target a 640x512 effective canvas.
Some searching for 8-bit fonts led me to "Press Start 2P" which, while intended to honour Namco arcade machines, is near enough to the chunky fonts I remember fondly from my childhood home computer that I can't go past it:
As a tiny nod to the present, the "screen" is actually slightly transparent and has a drop shadow - showing how far we've come in 34 years!
The final piece of the welcome screen was achieved by mounting the FrenzyGame component in a React-Game-Kit Loop and using the KeyListener to subscribe to the keys I care about - a quick perusal of the demo game showed me how to use it:
class FrenzyGame extends Component {

  constructor(props) {
    super(props);
    this.keyListener = new KeyListener();

    this.state = {
      gameOver: true  
    };
  }

  componentDidMount() {
    this.loopSubscriptionId = this.context.loop.subscribe(this.update);
    this.keyListener.subscribe([
      this.keyListener.SPACE
    ]);
  }

  componentWillUnmount() {
    this.context.loop.unsubscribe(this.loopSubscriptionId);
    this.keyListener.unsubscribe();
  }

  update() {
    if (this.state.gameOver) {
      if (this.keyListener.isDown(this.keyListener.SPACE)) {
        this.setState({ gameOver: false });
      }
    }
  };

  ...

  render() {
    return this.state.gameOver 
      ? this.renderWelcomeScreen() 
      : this.renderGame();
  }
}

Sunday, 29 October 2017

Stack Evolution part 2

Referring back to my go-to stack from part 1 of this series:
Javascript JQuery, Moment.js, etc
"Presentation" JSON/AJAX HTML/LESS
Controllers Play (Reactive, Async)
Services Play - RESTful API calls Mondrian
Persistence MongoDB (via ReactiveMongo)

I am simply delighted with the performance, scalability, maintainability and reliability of the entire stack from the Controllers layer down - i.e. Scala, Play and Mongo. (Incidentally, I've been running these apps on Heroku with MongoDB provided by MLab, and they have been similarly excellent). So that will not be changing any time soon.

What is no longer tenable is the mixture of HTML (including form submissions), LESS and per-page Javascript. At the top of the table, (i.e. front-end technologies), there is just too much awesomeness happening in this space to ignore. To me, React.js is the current culmination of the best thinking in the front-end world. The way every concept is the most reduced-down thing that could work (as opposed to the competition's kitchen-sink approach) really makes it a pleasure to learn and use.

Currently I'm absolutely loving Create-React-App as a brilliant bootstrapper that continues to add value even once you're up and running. It's got finely-honed and sensible defaults for things like Webpack, is upgradeable in-place, is beautifully documented and is almost psychic in always offering good suggestions or output as to what it's just done, or what can be done next. I currently have no plans to "eject" Create-React-App from any of the front-end projects I'm working on - it's just too useful to keep around.

Into this mix I've also added React Cosmos - this is a "component showcase" system that allows a super-rapid way to see all of the possible "states" of a given React component. The React props that a component needs are specified in fixture files, and Cosmos supplies a nice web UI to browse around and check that changes made to a component are working well and looking good in all of its potential states. It works excellently with the hot-reloading facilities of Create-React-App and really helps nail down component interfaces.



Another element I'm using to try and keep front-end complexity in check is Styled Components. Go have a read of their Github page for the full run-down but basically, I can get the best of both worlds with global CSS used where appropriate, keeping it DRY, together with individual components that won't mess with each other. It also massively helps in stopping the "mental CSS selector" problems during refactoring as observed by Ryan Florence. Extremely cool.

So to summarise, here's my 2017-and-beyond software stack:

Javascript React.js (with Cosmos)
"Presentation" JSON/AJAX JSX/CSS/Styled Components
Controllers Play (Reactive, Async)
Services Play - RESTful API calls Mondrian
Persistence MongoDB (via ReactiveMongo)

Saturday, 8 July 2017

The CRAP Stack, Part 3 - Front-End Routes with a Play server

As I continue to develop my React app that is hosted on a Play backend, I've come across the need to support "front-end routes"; that is, URLs that look like this:
  http://myapp.com/foo/bar
where there is no explicit entry for GET /foo/bar in Play's routes and nor is there a physical asset located in /public/foo/bar for the Assets controller to return to the client, as we set up in the last instalment:
  # Last of all, fall through to the React app
  GET /       controllers.Assets.at(path="/public",file="index.html")
  GET /*file  controllers.Assets.at(path="/public",file)
What we'd like is for the React application at index.html to be served up, so that it can then consume/inspect/route from the original URL via the Window.location API.

As it stands, the last line of routes will match, the Assets controller will fail to find the resource, and your configured "client error handler" will be called to deal with the 404. This is not what we want for a "front-end route"!

We want requests that don't correspond to a physical asset to be considered a request for a virtual asset - and hence given to the React app. And after a bit of fiddling around, I've come up with a FrontEndServingController that gives me the most efficient possible way of dealing with this. The Gist is available for your copy-paste-and-improve pleasure, but the key points are:

The fall-through cases at the bottom of routes become:
  GET /       controllers.FrontEndServingController.index
  GET /*file  controllers.FrontEndServingController.frontEndPath(file)
Those methods in FrontEndServingController just being:
  val index = serve(indexFile)

  def frontEndPath(path: String) = serve(path)

  private def serve(path: String) = {
    if (physicalAssets.contains(path)) {
      logger.debug(s"Serving physical resource: '$path'")
      assets.at(publicDirectory, path, true)
    } else {
      logger.debug(s"Serving virtual resource: '$path'")
      // It's some kind of "virtual resource" -
      // a front-end "route" most likely
      assets.at(publicDirectory, indexFile, true)
    }
  }


We're still using Play's excellent built-in AssetsController to do the hard work of caching, ETags, GZipping (all the classic webserver jobs) - we have injected it as assets using Dependency Injection - composition FTW. That true argument tells it to use "aggressive caching" which is ideal for this scenario where the bundle files we're serving up already have a cache-busting filename.
And now the "clever" bit being a recursive scan of the /public directory when we start up, assembling a definitive (and immutable!) Set[String] of what's actually a physical asset path:
  lazy val physicalAssets:Set[String] = {
    val startingDirectory = new File(physicalPublicDirectory)
    deepList(startingDirectory)
  }

  private def deepList(f: File): Set[String] = {
    val these = f.listFiles.toSet
    val inHere = these.filter(_.isFile).map { f =>
      f.getPath.replace(physicalPublicDirectory, "")
    }
    val belowHere = these.filter(_.isDirectory).flatMap(deepList)
    inHere ++ belowHere
  }

Saturday, 3 June 2017

A Top-Shelf Web Stack (Scala version) - part 2 - Herokufication

In Part 1 of this 2-part series, we set up a neat little two-pronged web project that combined the power, type-safety and scalability of a Scala/Play Framework backend with the finely-tuned and highly-productive Create-React-App system on the front. This works exceptionally well for very rapid development on a single local workstation with automatic hot-reloading on both sides, but we're going to need to deploy this somewhere if we want anybody else to feel the awesomeness. Enter Heroku, long my PaaS of choice and still IMHO a very viable option over "raw" AWS if you need it live, yesterday.

The essentials of this process are covered well in the Rails-centric article that has been the inspiration for this series, but I'll whip through it here as there are a couple of changes to make it work with Play.

First, we drop a package.json into the project root, that describes the front-end packaging process to Heroku:
{
  "name": "build-client-on-heroku",
  "engines": {
    "node": "6.3.1"
  },
  scripts": {
    "build": "cd client && npm install && npm run build && cd ..",
    "deploy": "cp -a client/build/. public/",
    "postinstall": "npm run build && npm run deploy && echo 'Done!'"
  }
}

Next, we add a Heroku buildpack to the front of our Heroku build chain, to assemble the Node front-end prior to booting Play:
  % heroku buildpacks:add heroku/nodejs --index 1
  % heroku buildpacks 
=== myapp Buildpack URLs
1. heroku/nodejs
2. heroku/scala
And, as documented in the above-linked article, we set an NPM environment variable that will get react-scripts (which is declared as a devDependency by create-react-app) to be installed as needed:
 
  % heroku config:set NPM_CONFIG_PRODUCTION=false

We're almost there. But before you git push heroku master, there's one extra bit of configuration to perform to make Play serve up our React app as expected. You might have noticed the deploy step up there in that package.json where we copy the result of the NPM build into public. If we just leave everything as-is, we'll only be able to access the React front-end by using https://myapp.herokuapp.com/assets/index.html - which is almost certainly not what we want.
A couple of extra lines in conf/routes will fix this right up:

# Our backend routes (e.g. serving up JSON) come FIRST:
GET /dummy-json controllers.DummyController.dummyJson 

# Last of all, fall through to the React app
GET /           controllers.Assets.at(path="/public",file="index.html")
GET /*file      controllers.Assets.at(path="/public",file)
Because of the use of wildcards, order is very important here. Backend endpoints come first, then the / route which captures the age-old "index.html is the default page" web convention, and finally a catch-all that ensures all the other artefacts of the NPM bundling get served up by Play's Assets controller.

And there we have it! A Create-React-App+Play stack. The CRAP stack! Despite the unfortunate name, I hope this has been a useful and inspirational starting point to build something great with these amazing (and free) technologies.

Wednesday, 17 May 2017

A Top Shelf Web Stack - Scala version - Play 2.5 + create-react-app

There are tutorials on the web about using ReactJS with Play on the back end, such as this one by Fabio Tiriticco but they almost always achieve the integration via the WebJars mechanism, which, while kinda neat and clever, can never be "first-class citizens" in the incredibly fast-moving JavaScript world. My day job uses a completely separate front- and back-end architecture which has shown me that letting NPM/Webpack et al manage the front-end is the only practical choice if you want to use the latest-and-greatest libraries and tooling.

A fantastic example is create-react-app, by Dan (Redux) Abramov et al, which makes it ludicrously-simple to get going with a React.JS front-end application that incorporates all of the current best-practices and configuration. I came across a very fine article that discussed hosting a create-react-app front-end on a Ruby-on-Rails server (in turn on Heroku) and figured it would be a good exercise to do a version with the Play Framework 2.5 (Scala) on the back end. This version will have a lot fewer animated GIFs and general hilarity, but hopefully it is still a worthwhile exercise!

I won't go into setting up a simple Play app as complete instructions for both beginners and experts are provided at the Play website, and it can be as simple as typing:
  % sbt new
  % sbt run
Once you've got your Play app all happy, getting the front-end going is as simple as running two commands in your project's root directory:
  % npm install -g create-react-app
  % create-react-app client
to create a React application in the client directory. You can check it works with:
  % cd client
  % npm start
Great. Now's a good time to commit your new client directory to Git, although you'll definitely want to add client/node_modules to your .gitignore file first. Let's modify the backend to have a tiny little JSON endpoint, call it from React when the app mounts, and display the content. First, we just add one line to our package.json so that backend data requests get proxied through the front-end server, making everything just work with no CORS concerns:
  "private": true,
  "proxy": "http://localhost:9000/",
  "dependencies": {
    "react": "^15.5.4",
    "react-dom": "^15.5.4"
  },
Make sure you kill-and-restart your React app after adding that line. Next, let's whip up a Play endpoint that returns some JSON: In conf/routes:
GET          /dummy-json       controllers.DummyController.dummyJson 
In app/controllers/DummyController.scala:
class DummyController extends Controller {

  val logger = Logger("DummyController")

  def dummyJson = Action {
    logger.info("Handling request for dummy JSON")
    Ok(Json.obj(
      "foo" -> "foo",
      "bar" -> "bar",
      "bazzes" -> Seq("baz1", "baz2", "baz3")
      )
    )
  }

Check that's all good by hitting http://localhost:9000/dummy-json directly with your browser. Now we put our front-end hat on and get the React app to fetch the JSON when it mounts:
class App extends Component {

  componentDidMount() {
    console.log('Mounted');
    fetch('/dummy-json',{ accept: 'application/json'})
      .then(response => response.json() )
      .then(json => console.log(json) )
      .catch(error => console.error(error));
  }
 ...
}
Setting the accept header is not strictly necessary but it helps create-react-app to know that this request should be proxied. Plus it's generally good form too. Now when your app hot-reloads, watch your browser's Network tab. You'll see the request go out on port 3000, the server log the request and respond on 9000, and the response arrive back on port 3000. Let's finish off the local-development part of this little demo by wiring that response into our app's state so that we can render appropriately:
class App extends Component {

  constructor() {
    super();
    this.state = {};
  }

  componentDidMount() {
    console.log('Mounted');
    this.fetch('/dummy-json').then( result => {
      this.setState({
        result
      });
    });
  }

  fetch (endpoint) {
    return new Promise((resolve, reject) => {
      window.fetch(endpoint, { accept: 'application/json'})
      .then(response => response.json())
      .then(json => resolve(json))
      .catch(error => reject(error))
    })
  }

  render() {
    let { result } = this.state;
    return (
      <div className="App">
        <div className="App-header">
          <img src={logo} className="App-logo" alt="logo" />
          {result ? (
            <h3>{result.foo}</h3>
          ) : (
            <h3>Loading...</h3>
          )
        }
        </div>
        <p className="App-intro">
          To get started, edit src/App.js and save to reload.
        </p>
      </div>
    );
  }
}
So easy! In the next installment, we'll consider deployment to Heroku.